
The Cube
a Flexporter tutorial
Version 1.0

Urban legend : the cube is the easiest possible object to test an exporter.

Right ? Wrong. Actually, while it is the simplest object geometrically speaking, it
might very well be the most complex one as far as exporting is concerned.

Here's why.

HARDWARE RULES

MAX native data is not hardware-friendly. It just isn't. "Hardware-friendly" means an
object is available as a unique list of vertices, or better, indexed vertices. From now
on we'll only speak about indexed vertices, since indexed primitives are usually the
fastest ones to render.

Now what's a vertex ? In this context of hardware-friendliness, a vertex is actually a
fat vertex, or flexible vertex in D3D parlance. That is, it's not just a position - it's a
position and all its attributes (diffuse color, normal vector, etc). From now on, we'll
say "point" for a simple geometric position, and "vertex" for a point and its attributes.
For example, here's how a vertex structure could look like :

struct Vertex
{
 Point mPos; // The 3D point
 udword mDiffuseColor; // The point's diffuse color
 Point mNormal; // The point's normal vector
};

So, two different vertices can actually have the same point, but with different normals.

Just to make sure we're using the same vocabulary, let's define :

- the geometry, as a list of points (or vertices, see below)
- the topology, as a list of indices referencing points from the geometry

You must be familiar with this concept, since it's widely used in both OpenGL or D3D,
for example by glDrawElements (GL) and DrawIndexedPrimitive (D3D) methods.

MAX native data is not hardware-friendly, because it uses different geometries and
topologies to describe a mesh. You read that well. MAX internally has a (Geometry,
Topology) couple for each vertex attribute. To handle a position, a single set of
mapping coordinates and vertex colors, you end up with 3 geometries (a list of points,
a list of UVs, a list of colors) and 3 independent topologies indexing those 3 different
pools (a list of faces, a list of texture-faces, a list of color-faces). The only
requirement is that all topologies have the same number of faces. On the other hand,
the geometries can have an arbitrary number of elements. This is a very flexible way

of storing a mesh, but it doesn't help when it comes to stuffing all of this in a vertex
buffer.

We said above that the geometry was defined as a list of points or a list of vertices.
That exactly where the hiatus lies :

- MAX defines it as a list of points (3D positions)
- GL and D3D need it as a list of vertices (3D position + attributes)

THE CANONICAL CUBE

If you export the canonical MAX cube with Flexporter's ASCII exporter, you get
something like that :

MAX native mesh data:
12 faces
8 vertices
12 mapping coordinates
0 vertex colors
Parity is true.

Let's have a closer look at this......

12 faces is easy to understand, since we're only dealing with triangles. The cube has
6 quad-faces, each quad is 2 triangles, that's 6 * 2 = 12 triangles, no problem.

8 vertices is even more obvious. Cube. 8 vertices. Obvious ? Yes, but inaccurate with
our new wordlist. It's 8 points, actually. 8 geometric points. In the end, in your vertex
buffer, you'll later see that a cube has actually 24 vertices. But we'll handle that later.
For now, our 8 points are listed as :

Vertices:
-39.999992 0.000000 -39.999989
39.999992 0.000000 -39.999989
-39.999992 0.000000 39.999989
39.999992 0.000000 39.999989
-39.999992 79.999977 -39.999989
39.999992 79.999977 -39.999989
-39.999992 79.999977 39.999989
39.999992 79.999977 39.999989

The following 12 mapping coordinates don't sound very obvious, and indeed, they
aren't. This is confusing, but that's just what MAX uses internally, and what you get
out of the MAX SDK. We'll have to deal with it. The list is :

Mapping coordinates:
0.000000 0.000000 0.000000
1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
1.000000 1.000000 0.000000
0.000000 0.000000 0.000000
1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
1.000000 1.000000 0.000000

0.000000 0.000000 0.000000
1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
1.000000 1.000000 0.000000

As you see, there are redundant entries here. The number of mapping coordinates
(12) is also different from the number of geometric points (8). This is what we were
saying in the first part : in MAX, the different geometries for each vertex attribute can
have different numbers of elements.

This is exactly what happens for the cube, and that's one of the reason why it is not
that simple object people are usually thinking about. You just can't simply copy the
MAX data into a vertex buffer. There's a compulsory cleaning pass somewhere that
must be performed.

But wait, that's only the beginning. There's worse.

SMOOTHING GROUPS AND CONSEQUENCES

This is where the cube really becomes a painful object to deal with, as opposed to,
say a sphere.

What about vertex normals ? They aren't exported as part of the MAX native mesh,
so we'll have to compute them ourselves, using the object's smoothing groups.
Smoothing groups are exported as a 32-bits mask for each face. Each bit
corresponds to a given group.

In our exported text file, smoothing groups are stored along with topologies :

Faces:
(vref0 vref1 vref2 tref0 tref1 tref2 cref0 cref1 cref2 MatID Smg EdgeVisCode)
0 2 3 9 11 10 -1 -1 -1 0 2 0
3 1 0 10 8 9 -1 -1 -1 0 2 0
4 5 7 8 9 11 -1 -1 -1 0 4 0
7 6 4 11 10 8 -1 -1 -1 0 4 0
0 1 5 4 5 7 -1 -1 -1 0 8 0
5 4 0 7 6 4 -1 -1 -1 0 8 0
1 3 7 0 1 3 -1 -1 -1 0 16 0
7 5 1 3 2 0 -1 -1 -1 0 16 0
3 2 6 4 5 7 -1 -1 -1 0 32 0
6 7 3 7 6 4 -1 -1 -1 0 32 0
2 0 4 0 1 3 -1 -1 -1 0 64 0
4 6 2 3 2 0 -1 -1 -1 0 64 0

The first line is here as a helper, to describe exported data. We see the 3 different
topologies introduced at the start of the document :

- one for points (vref0, vref1, vref1)
- one for UVs (tref0, tref1, tref2)
- one for colors (cref0, cref1, cref2).

Each line then describes a triangle in the mesh. The first one, for example, tells us
that :

- the first triangle references vertices (0, 2, 3) in the vertex pool (the previous list
of 8 vertices)

- the first triangle references mapping coordinates (9, 11, 10) in the UV pool (the
previous list of 12 mapping coordinates)

- the first triangle has no vertex colors (-1, -1, -1)
- the first triangle uses material 0
- the first triangle uses smoothing groups 2
- the first triangle has edge visibility code 0

As you see, the cube isn't our friend since it actually uses different smoothing groups
for each quad-face. Since each point of the cube belongs to 3 triangles, this means
that each point will actually have 3 different normals, depending on which triangle the
point belongs to. So, in the end, we'll have to use 3*8 = 24 vertices in our final vertex
buffer. For example the first point P0 could be replicated 3 times in the vertex buffer :

Point P0;
Point FirstNormal;
Point P0;
Point SecondNormal;
Point P0;
Point ThirdNormal;

It may seem like a waste, but that's still the most efficient way to organize things.

Picture 1 : standard cube, standard smoothing groups

In case those 3 different normals for each cube point doesn't sound obvious to you,
let's have some pictures. In picture 1 you can see the standard cube (12 faces) with
default smoothing groups. Each little blue segment is a normal vector. Each of the 8
cube points in this picture has 3 normals, as expected.

Notice the effect of those different normals on shading : there's a clear cut between
each quad-face (each edge is clearly visible). This happens because each quad-face
belongs to different smoothing groups. Without smoothing groups, using a single
normal at each point, our cube would look like the one in picture 2. Not really what we
want (i.e. it doesn't look like in MAX)

Picture 2 : standard cube, unique smoothing group

As a side note however, a smooth shading can produce interesting effects when
tesselation is high. In picture 3, our cube has been tesselated a lot, and uses default
smoothing groups. As you see, there's no visible difference between this and the
previous non-tesselated version. That's because all vertex normals are aligned with
face normals, (picture 4) hence tesselation has no influence on shading.

Picture 3 and 4 : tesselated cube, standard smoothing groups

Picture 5 and 6 : tesselated cube, unique smoothing group

Now, the same tesselated cube using a unique smoothing group produces a very
different result, as seen in picture 5. Notice how vertex normals are now curved at
each corner point (picture 6).

So, to summarize, our "simple" cube :

- doesn't expose a one-to-one mapping between the native 8 points and the
native 12 mapping coordinates

- uses different topologies for points and mapping coordinates
- uses 3 different normals for each native point

In other words, the cube captures all possible troubles into a single mesh. Not bad for
the "most simple object" !

How do we deal with that mess ? The solution is called consolidation.

CONSOLIDATION TO THE RESCUE

Consolidation is the process by which MAX data is transformed into a hardware-
friendly representation, where a single topology references a single list of fat vertices.
Each fat vertex, as described before, has a geometric position, a normal vector, and
possibly more attributes like diffuse or specular colors.

Flexporter does that for you, you just have to select "Consolidate mesh" in the
Options Panel. Then, the ASCII file contains consolidated data. For our cube it goes
like this :

GEOMETRY

Nb GeomPts: 8
Nb Verts: 24
Nb TVerts: 4

"Nb GeomPts" is the number of geometric points in the original vertex cloud.

"Nb Verts" is the number of vertices after some points have been replicated by the
consolidation process. As expected, we end up with 24 vertices.

"Nb TVerts" is the number of texture vertices. Why 4 ? This is just how Flexporter
reduced the original MAX list of 12 texture-coordinates, down to 4 (we'll see the new
list below).

Next we have a list of indices :

Indexed geometry:
0 3 2 1 4 7 5 6 0 5 1 4 1 7 3 5 3 6 2 7 2 4 0 6

Here's a hint : when you're facing a list of indices and you're not sure what pool it's
actually indexing, just check the highest index, and look for a pool containing
(highest_index + 1) entries...

In this case, we have a list of 24 indices into the list of geometric points. You can
check that the highest index is 7, so the pool of points should contain 8 entries.
Those are our 8 original geometric points, exposed that way in the consolidated
mesh :

Vertices: (8)
-39.999992 0.000000 -39.999989
39.999992 0.000000 -39.999989
-39.999992 0.000000 39.999989
39.999992 0.000000 39.999989
-39.999992 79.999977 -39.999989
39.999992 79.999977 -39.999989
-39.999992 79.999977 39.999989
39.999992 79.999977 39.999989

This list may differ from the one already exposed in the native MAX data, even if for
the cube it doesn't. Sometimes indeed, MAX has redundant or unused vertices in its
meshes. The consolidation process gets rid of them.

The same goes for mapping coordinates :

Indexed UVWs:
1 2 3 0 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2

This is a list of 24 indices as well. Max index is 3, so the pool of UV coords should
contain 4 entries. This is our mysterious "Nb TVerts = 4" from above, and next we
find the obvious optimized list :

UVW mappings: (4)
0.000000 0.000000
1.000000 0.000000
0.000000 1.000000
1.000000 1.000000

This is followed by the list of vertex normals. That one might be confusing : it is not
indexed like points and UVs ! Why ? Simply because the normal computation takes
another code path in Flexporter, and that code path is incomplete. Nothing should
prevent normals to be indexed otherwise. But so far that's a general rule out of
Flexporter : vertex normals are not indexed.

Vertex normals: (24)
0.000000 -1.000000 0.000000
0.000000 -1.000000 0.000000
0.000000 -1.000000 0.000000
0.000000 -1.000000 0.000000

0.000000 1.000000 0.000000
0.000000 1.000000 0.000000
0.000000 1.000000 0.000000
0.000000 1.000000 0.000000

0.000000 0.000000 -1.000000
0.000000 0.000000 -1.000000
0.000000 0.000000 -1.000000
0.000000 0.000000 -1.000000

1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000
1.000000 0.000000 0.000000

0.000000 0.000000 1.000000
0.000000 0.000000 1.000000
0.000000 0.000000 1.000000
0.000000 0.000000 1.000000

-1.000000 0.000000 0.000000
-1.000000 0.000000 0.000000
-1.000000 0.000000 0.000000
-1.000000 0.000000 0.000000

If you examine this list carefully, you'll quickly discover the 6 obvious parts, artificially
separated by a blank line above. Each of them obviously corresponds to a quad-face
of the cube. As you could have guessed for this object, all vertex normals of a same
quad-face are the same, aligned with one of the axis of the object's local frame.

Now you might wonder why all of this is better than the native MAX data. After all, we
still have a list of (8) vertices, a list of (4) mapping coordinates, and a list of (24)
normals. Right. But now we can access them through a single topology :

TOPOLOGY

Nb faces: 12
Nb submeshes: 6

We get back our 12 original triangles, no surprise. However they've been cut into 6
submeshes. A submesh here, is a bunch of triangles referencing hardware-friendly
(fat) vertices. Different materials lead to different submeshes. So do different
smoothing groups. That's why we have 6 submeshes here, even if all of them use the
same material. Without looking at the actual data, you can guess that each submesh
corresponds to a quad-face of the cube. 6 quads, 6 submeshes, sounds correct.

In our ASCII file, each submesh then contains the following information :

Submesh #0
Material ID: 0
SmGrps: 2
NbFaces: 2
NbVerts: 4
NbSubstrips: 0

For our cube, each submesh has 2 faces and 4 vertices, which makes a total of 12
faces and 24 vertices, as expected. The actual indices referencing those 24 vertices
are further exported for each submesh, from :

Submesh #0 (2 faces)
0 1 2
1 0 3

To :

Submesh #5 (2 faces)
20 21 22
21 20 23

That's it, that's our single topology. The trick is that it doesn't simply reference a list of
fat vertices, it actually references our previous lists of indices, which then map lists of
vertices. Warning, there's an extra level of indirection here ! It's usually a bit
confusing at first. We did it that way for a very obvious reason that should sound
familiar now : flexibility. Different people have different goals, and some users might
not be interested in the hardware-friendly way of organizing things, with replicated
vertices, etc. By using indices all the way, we let the user have the last word, and
organize things the way he wants. Indices were the obvious way to go, because it's
easy to go from this representation to the one replicating vertices. Going the other
way round is much more difficult.

Now, let's get back to our cube. To make things completely clear, let's examine the
first face of the first submesh, reported as (0, 1, 2), and see how to use the data.

For points, (0,1,2) maps the three first entries of :

Indexed geometry:
0 3 2 1 4 7 5 6 0 5 1 4 1 7 3 5 3 6 2 7 2 4 0 6

Which then map entries of :

Vertices: (8)
-39.999992 0.000000 -39.999989
39.999992 0.000000 -39.999989
-39.999992 0.000000 39.999989
39.999992 0.000000 39.999989
-39.999992 79.999977 -39.999989
39.999992 79.999977 -39.999989
-39.999992 79.999977 39.999989
39.999992 79.999977 39.999989

For mapping coordinates, (0,1,2) maps the first three entries of :

Indexed UVWs:
1 2 3 0 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2

Which then map entries of :

UVW mappings: (4)
0.000000 0.000000
1.000000 0.000000
0.000000 1.000000
1.000000 1.000000

For normals, (0,1,2) directly maps the non-indexed list of normals :

Vertex normals: (24)

0.000000 -1.000000 0.000000
0.000000 -1.000000 0.000000
0.000000 -1.000000 0.000000
0.000000 -1.000000 0.000000
(etc)

In summary, the three fat vertices for our first triangle are :

(x, y, z) -39.999992 0.000000 -39.999989
(u,v) 1.000000 0.000000
(Nx, Ny, Nz) 0.000000 -1.000000 0.000000

(x, y, z) -39.999992 0.000000 39.999989
(u,v) 0.000000 1.000000
(Nx, Ny, Nz) 0.000000 -1.000000 0.000000

(x, y, z) 39.999992 0.000000 39.999989
(u,v) 1.000000 1.000000
(Nx, Ny, Nz) 0.000000 -1.000000 0.000000

This is what we should copy in our vertex buffer.

CONCLUSION

That was a lot to write for a simple cube !

Contrary to what popular wisdom says, the cube is one of the most painful object to
get right. It touches almost all the problems you'll have when exporting meshes. I got
a lot of mails from people getting very frustrated not to be able to handle the "simple
cube" with a snap. Well, now you know - the cube is a bitch.

Consolidation is here to help you bringing MAX meshes to your engine with less pain.
It might look confusing at first - and to some extent it is - but one way or another you'll
have to do it as well if you want decent performances out of your engine. So, even if
you later recode your own one, it might be a good idea to start from Flexporter's built-
in version, just to get things started, and have something to feed your engine with.

But the choice, as always, is yours.

Pierre Terdiman
April 13 2003, Sunday

	The Cube

