FLEXPORTER FAQ

Last update : June, 25, 2000

Why do you use funky comments in your code ?

Because I use DOXYGEN to automatically create my docs….

Why is it so slow to export a Character Studio skin ?

Because Character Studio provides a Vertex Interface, that I must use. For each vertex I have to get it, use it, release it, and it happens to be slow. Here is the code I use, if someone knows a faster way, I would be happy to hear about it :

IPhyVertexExport* vtxExport = pcexport->GetVertexInterface(i);

if(vtxExport)

{

// Need to check if vertex has blending


if(vtxExport->GetVertexType() & BLENDED_TYPE)


{



// Here, each vertex is linked to multiple bones.



IPhyBlendedRigidVertex* vtxBlend =

(IPhyBlendedRigidVertex*)vtxExport;



// Number of driving bones



udword NbBones = vtxBlend->GetNumberNodes();



for(udword n=0;n<NbBones;n++)



{




INode* Bone

= vtxBlend->GetNode(n);




Point3 Offset
= vtxBlend->GetOffsetVector(n);




float Weight
= vtxBlend->GetWeight(n);



}



pcexport->ReleaseVertexInterface(vtxExport);



vtxExport=null;


}


else

{


….other code path…

}

}

How do I use the Character Studio’s offset vectors, weights, etc ?

Here’s some code samples.

For non-blended vertices, this is very easy :

// Compute mesh deformation for Character Studio's non-blended vertices

for(udword i=0;i<NbVerts;i++)

{


// Each vertex is linked to a single bone, whose ID has been exported


udword ID = BonesID[i];


// We also have one offset vector per vertex. The offset vector

// must be multiplied by the skeleton's bone's matrix. Note : the

// absolute matrix, not the relative one.


Point P = Offsets[i] * Matrix[ID];


// The vertex might need further transformation to match D3D frame !


Skin[i].p.x = P.x;


Skin[i].p.y = P.z;


Skin[i].p.z = P.y;

}

For blended vertices, this is almost as easy :

// Compute mesh deformation for Character Studio's blended rigid vertices

for(udword i=0;i<NbVerts;i++)

{


// Each vertex is drived by N bones


udword NbBones = BonesCounts[i];


Point Blended(0, 0, 0);


float
TotalWeight = 0.0f;


for(udword j=0;j<NbBones;j++)


{



// Get the current bone’s ID for that vertex



udword ID = BonesID[j];



// Get current weight for that bone



float Weight = BonesWeights[j];



// Update total weight



TotalWeight+=Weight;



// The skin's offset must be multiplied by the

// skeleton's bone's matrix…



Point P = Offsets[j] * Matrix[ID];



// …then weighted…



P *= Weight;



// Take bone’s contribution into account



Blended += P;


}


// D3D transform + final division


Skin[i].p.x = Blended.x / TotalWeight;


Skin[i].p.y = Blended.z / TotalWeight;


Skin[i].p.z = Blended.y / TotalWeight;

}

Gosh ! It crashed MAX !

Actually, it shouldn’t (…) But I experienced some really strange crashes indeed. Sometimes it helps to manually collapse all your geometries before exporting.

Why did you choose a Utility plug-in ?

Because it allows me to add extra stuff in Flexporter if I want to. For example if I suddenly need to burry a lightmapper as a Flexporter option, I can. It would be difficult to do the same with an Export plug-in….

Where should I put all the DLLs ? Where’s Flexporter in MAX ?

First of all, be sure you read the Installation notes in Flexporter.doc.

Then :

· You must have MAX 3.x, put the main DLU file in MAX's Plugins
directory, and the other DLL files in a reachable place, for example in the
MAX root directory with the other DLLs. Flexporter plug-ins (.DLI files) must be in MAX root directory as well.

· Run MAX.
· To check the plug-in has correctly been loaded, look in:
File->Summary Info...
· Then click on Plug-In info... and look for Ice Exporter.
· To access the Plug-In, you must click on the Utilities property page, the
last one on the right, in the Command Panel. If there's no "ICE Flexporter"
in the list of utility plug-ins, click on "Configure Button Sets" and add an
entry for it.
· That's the standard procedure to access Utility Plug-Ins (.DLU files).

Is there a ZCB reader / importer available ?

There is one in Panard Vision (http://pvision.planet-d.net/) but I didn’t code it and I don’t know how well it works, and even if it’s up to date.

I have my own ZCB importer, but it’s part of my own engine and wasn’t written on distribution purpose. For the moment I just can’t spread that one.

Now, ZCB was just a little private test format, to check all the features were correctly exported. I wasn’t expecting everyone would use that. That’s the whole point of Flexporter : you’re supposed to be able to code your own format in a very easy way, without even needing the MAX SDK.

I think recoding a ZCB importer is a lot more complicated than writing a new format plug-in for Flexporter.

I can’t recompile the exporters, help !

· I only tested with VC++ 6.0, not the previous versions

· MAX plugs (and Flexporter plugs) should be compiled in Release mode only.

To debug Release builds, go to the Settings panel, then :

· In the C/C++ sheet, select Optimizations :Disable (Debug), generate browse info, and Debug info : Program Database.

· In the Link sheet, select Generate debug info.

How do I use the cropping values ?

Here’s some code to handle the texture matrix and the cropping values :

Point TextureVector;

TextureVector.x = ExportedU;

TextureVector.y = ExportedV;

TextureVector.z = ExportedW;
// Or 0.0f

Point CoordMaps = TextureVector * TexMat;
// Multiply by the texture matrix

float u = CoordMaps.x;

float v = CoordMaps.y;

FinalU = (u*ScaleU)+OffsetU;

// Use the cropping values

FinalV = ((v-1.0f)*ScaleV)-OffsetV;

I know the equations look weird, but I’m not responsible for that….

Character Studio export doesn’t work with my scene !

I forgot to expose some rather severe limitations indeed. My mistake.

1) Only use real BIPED parts. Do not use a PHYSIQUE skin linked to non-BIPED parts, it won’t work. To check whether your bones are BIPED parts or not, click on Summary Info. Valid bones are marked as Biped Objects.

2) Use the same wordlist as Character Studio ! BIPED parts are for example named Bip01 Head, Bip01 L Calf, and so on. You can change the Bip01 part only. For example the name MyCharacter L Calf is a valid name. Dragon L Wing is not, because L Wing doesn’t appear in the original Character Studio wordlist.

Why do those limitations exist ? For a single reason : motion blending. I used to do motion blending with my characters. I then needed to link a given bone from a given motion to the corresponding bone from another motion. That’s why I used what I called the CSID (Character Studio ID) in Flexporter. CSIDs are tags between 0 and 104, because the complete Character Studio 2.0 wordlist contains 105 bones at most. That way, I assign a unique CSID to each bone, and that value is later used to blend motions.

The alternative is to use the Node ID (as saved by the ASCII Exporter for example) as a bone ID. It always work, but that Node ID depends on the scene organisation ! Export the scene once, merge another object in it, export the scene again : the Node ID for your bones may have changed. Worse : you have a given character, plenty of motions, you export them. Nice. Then your favorite artist decides a given bone is finally useless, and deletes it. Guess what ? Now you must re-export all the previously exported motions, since the Node IDs have changed. With my method, there’s no need to re-export, and I can even blend two motions exported from two different skeletons (as Character Studio does, actually). In short, I couldn’t use the NodeID for Motion Blending, hence those rather painful limitations.

For those who don’t care about motion blending, I’ll expose an option to use the Node ID as a bone ID nonetheless. As soon as possible.

What’s new ?

Version 1.04 (June 2000)

· A new option to unload the Flexporter plug-ins.

· Doc updated with vital Character Studio information…

Version 1.03 (June 2000)

· Cameras’ target nodes can be discarded.

· Hidden nodes aren’t exported anymore.

· Extra skeletal information added for Character Studio skins.

· PRS animations are now exported.

· Sampling only. You can choose the sampling rate.

· Visibility track is exported. (Hey JC, that one’s for you….)

· Node-basis settings via the user-defined properties.

· Redundant textures no more exported, I keep track of them.

· Motion files for BIPED characters can be exported alone.

Beta version 1.02 (May 2000)

· Flexporter crashed when exporting a Character Studio skin made of blended and non-blended vertices. The bug has been tracked and fixed. (thanks Amaury)

· New options in the Options Panel to save/restore your settings in the registry.

Beta version 1.01 (May 2000)

· Mesh flags replicated in IceZCBFormat.h

· Defines for chunk version numbers.

· A flag has been added for local / absolute PRS.

· Textures in ZCB files are now 24 or 32 bits.

· Consolidation settings in the options panel

· Consolidation code updated, some bugs removed

· Consolidation result is now exported by ASCII & ZCB exporters

· Consolidation is now also performed on Character Studio skins

· Now I keep track of exported materials and don’t export redundant ones.

· Even better, if a mesh only uses a single submaterial, I just export that single one (even if it is part of a MAX material which have many submaterials)

· Instance information is now exported by the ZCB exporter

· Stability has been improved, and it shouldn’t crash anymore.

Beta version 1.0 (April 2000)

· first Flexporter release

Thanks for your feedback :

Amaury Aubel (http://ligwww.epfl.ch/aubel.html)

Olivier Brunet (Panard Vision : http://pvision.planet-d.net/)

Stephen Wilkinson

