
Radix Redux 

Pierre Terdiman, 2018, v1.0 

 

 

Again ? 

Back in 2000 I published a short article about radix sort on my website (1). The main goal of the article 

was to show how to handle floating-point values with a radix sort, which is something that may not have 

been entirely obvious at the time. 

Over the years, I have received multiple emails pointing out that my radix sort was sometimes slower 

than traditional sorting algorithms. This is correct and not a surprise. In my initial article I was already 

mentioning that radix sort is not a good choice for sorting a small number of values. Then in 2008 I 

wrote a blog post (2) which had a small picture, reproduced here, summarizing the performance of 

various sorts for various numbers of elements (3): 

 

In these tests, “Radix” was an implementation similar to the one I published in 2000. As you could see 

from these results, for a small number of values (~100) or for a very large number of values (>1 million), 

alternative algorithms were indeed faster. (I ignore the multi-threaded Radix experiment here, just to 

compare apples to apples). This is old news really. 

Now, in 2018, about 18 years after I published that article, somebody once again contacted me (on 

Facebook, of all places) to tell me that some other implementation online was faster than mine when 

sorting 10 million values. 

Yes. I know. That is quite enough now. 

I was explaining for the Nth time what the issue was with the radix code when I figured that maybe it 

would be a good idea to put the information once and for all on my blog. 

So, there. 

 

 

 

 

 



The issue 

A radix sort uses more memory than e.g. a regular quick-sort implementation, so unsurprisingly the 

issue is cache misses. All things being otherwise equal, using more memory naturally gives birth to more 

cache misses when you access that extra memory. But what matters even more than the amount of 

memory used is how you access that memory: sequentially or randomly. In that respect my old 

implementation was pretty bad. 

Grab the original code and just look at it: 

 while(Indices!=IndicesEnd) 
 { 
  udword id = *Indices++; 
  mIndices2[mOffset[InputBytes[id<<2]]++] = id; 
 } 
 

There are multiple reads and writes here: 

- We parse the previous array of sorted indices (a.k.a. ranks): 

  udword id = *Indices++; 
 

Status: green. This is a simple sequential read, so no problem here. 

 

- Then using that previous rank, we read the input bytes: 

 
InputBytes[id<<2] 

 

Status: red. This is a completely random read access from a potentially large array. Costly. 

 

- Then using that byte, we update (read/write) the offsets: 

 
mOffset[…]++ 

 

Status: orange. This is a random read/modify/write operation in a small array. This is random 

access but it will most likely “always” be in the cache, so probably not that bad. 

 

- Then using the offset, we write the next ranks: 

 
mIndices2[…] = id; 

 

Status: red. This is a random write access to a potentially large array. Costly. It might be a little 

bit less costly than the previous red read operation, because the number of target addresses is 

limited, and we only write to them sequentially. But still, pretty bad. 

 

So the sorting loop does not do a lot of work, but the few operations it does can potentially be costly. 

  

 



Indices vs values 

The code was written this way because it is a “rank sorter”, which means it returns an array of sorted 

indices, or ranks: 

//! Access to results. mIndices is a list of indices in sorted order, i.e. in the 
order you may further process your data 
 inline_ udword* GetIndices() const { return mIndices; } 
 

These ranks are indexing the initial array of input values, which remains untouched. That’s what the 

const in the function’s signature tells you: 

 RadixSort& Sort(const float* input, udword nb); 

 
Traditional algorithms like std::sort() work differently. By default they are “value sorters”, which means 

they do modify the array of passed values (they sort it): 

 int* values; // Array of N values to sort 
 std::sort(values, values+N);// Values have been reshuffled/sorted after the call 

 
They don’t have a built-in notion of ranks: if you need ranks, you need to add and manage them 

yourself. 

 struct Key 
 { 
  int  mValue; 
  int  mRank; 
 
  bool operator==(const Key& p) const { return mValue == p.mValue;} 
  bool operator<=(const Key& p) const { return mValue <= p.mValue } 
  bool operator>=(const Key& p) const { return mValue >= p.mValue } 
  bool operator<(const Key& p) const { return mValue < p.mValue; } 
  bool operator>(const Key& p) const { return mValue > p.mValue; } 
 }; 
 
 Key* values; // Array of N keys to sort 
 
 std::sort(values, values+N); ); // Keys have been reshuffled/sorted after the call 
 

That last call will reshuffle the keys, i.e. both the values and the ranks. Technically the algorithm does 

not need the ranks, but they are useful for users to make sense of the results. For example if you are 

sorting objects by distance, you are not really interested in the actual list of sorted distance values: what 

you want is a list of sorted objects, an order in which you will process them. My radix sort 

implementation recognized that fact and avoided modifying the values at all. 

But this design choice had a direct impact on performance and memory usage. In a nutshell, dropping 

the values entirely limits the amount of extra memory used by the sort function, but increases the 

number of cache misses and makes performance worse. 

Let’s revisit this design choice today and see what we come up with. 

 

 



An alternative implementation 

A straightforward way to improve the code is to output both the rank and value from the sorting loop – 

like what the std::sort() function does when given an array of “keys”. This helps because the two first 

memory accesses that we looked at are actually just retrieving the values in their sorted order so far. 

This means that we can replace this: 

  udword id = *Indices++; // green 
InputBytes[id<<2]  // red 

…with just a sequential read access (green) of values output in the previous pass. 

Now there is a trap here: as we just said we need to output an extra value now, like we output the ranks 

in the initial code. Which was done this way: 

mIndices2[…] = id; // red 
 

This is also a red / costly write. The trap (and a common mistake if I look a radix sort implementations on 

the internet) is to output the value independently of the rank, to a separate buffer. If you use a separate 

buffer, you’re getting two cache misses instead of one and replacing a costly read access with a costly 

write access: not great. The right thing to do here is to copy what we had for the std::sort() call, and mix 

the rank and value in the same “Key” or “combo” structure. That way there is only one target address to 

write to, as before, and while we do write twice as much data as in the previous code we at least avoid 

getting two cache misses. 

The next trick then, is to recognize that the values are only needed to make the read accesses in the 

next pass faster. Thus, we do not need to output them in the last pass. We can output the ranks alone in 

the last pass, which allows us to present the results to users in the same way as for the initial 

implementation: just an array of sorted indices. 

There are a lot of other minor implementation details that could be discussed (like using templates to 

hardcode the pass index and make the loop a bit tighter). Please refer to the companion source code if 

you are interested. 

The only clear drawback for this alternative implementation is that it needs more memory internally, to 

store the sorted values (that we did not need to store before). 

Note that this new implementation is a proof-of-concept prototype that does not re-implement all the 

features of the original code. In particular it only sorts integers (not floats) and it does not support what 

we called “temporal coherence” in the initial article. 

 

 

 

 

 



Results 

I used my old test project (2), recompiled with a new compiler (Visual Studio 2015) on a new machine 

(i7-based). I removed the multi-threaded radix experiment and added a new, more cache-friendly radix 

sort implementation (“RadixRedux”) based on this article. 

In 2008 I got: 

 

In 2018 I got: 

 

The top numbers are the number of values to sort. The other numbers next to the sorts’ names are the 

timings in K-cycles. We see that: 

- For all implementations the same code became faster in 2018 compared to 2008. This is 

expected when using a new compiler on a new machine but it’s good to see it does indeed 

happen. 

 

- The radix sort code seems to benefit more from this new environment. The relative 

performance improvements due to just recompiling the code seem higher for the radix sort than 

for the alternative sorts. It might be because the new test is sorting integers while the old test 

was sorting floats (which goes to a special codepath in the radix implementation). Or it might be 

that the SSE2 compile flag gives better results on the radix code. Or something. I did not 

investigate. 

 

- Up to a million values, there isn’t much difference between the two radix sort implementations. 

On the other hand what is not shown here is that the new implementation uses more memory, 

to store temporary sorted values. Typically games and other interactive applications do not 

need to sort a million values at runtime, so for them the regular implementation is probably 

better. This validates the design decision made 18 years ago in the initial implementation. 

 

 

 



Beyond a million values the times as reported by rdtsc() became a bit dubious. I think I started to 

overflow the 32bit part of the TSC counter. Just to be on the safe side, I switched to timeGetTime() and 

repeated the benchmarks for large numbers of values. The following numbers are now in ms: 

 

We see that beyond a million values to sort, the new implementation is significantly faster than the old 

one – sometimes more than an order of magnitude faster. This is because it is more cache-friendly, 

which helps when we run out of cache. 

We also see that this new version makes the radix sort faster than alternative implementations again. 

 

Conclusion 

This article explored the limits of my “radix sort revisited” implementation. It showed that this old 

version does indeed becomes slower than traditional sorting algorithms for a large number of values. 

We showed how to overcome these limits and discussed implementation details to make the code more 

cache-friendly and sometimes significantly faster. At the same time we saw that the new version does 

not perform better than the old one for “reasonable” numbers of values. But it does use more memory, 

so the initial design decision for the code was perhaps the right one. 

 

See you in 18 more years 😊 

 

References 

1) http://www.codercorner.com/RadixSortRevisited.htm 

2) http://www.codercorner.com/blog/?p=90 

3) http://www.codercorner.com/Pictures/Sorts.jpg 

 

 

 

http://www.codercorner.com/RadixSortRevisited.htm
http://www.codercorner.com/blog/?p=90
http://www.codercorner.com/Pictures/Sorts.jpg

